### <u>Current Asphalt</u> <u>Concrete (AC) Mixtures</u> <u>in Israel</u>



#### החברה הלאומית לדרכים בישראל בע"מ

Maa'tz- The Israeli National Roads Company Ltd.

#### <u>19/11/2008</u>



Presented by: Yehuda R. Ziss Yona – Engineering Consulting & Management Itd





Facts and Figures Israel 2008

• 25 Asphalts plants,

INRC

- 5-6 Million ton annual production,
- Plant qualification required,
- QA/QC system implemented,
- Hot climate (9 months),
- High traffic volumes and axle loads.

## Up until the 90's

- 19 mm (3/4") or 12.5 mm (1/2") Dense Graded asphalt Mixes (DGM) only,
- 60/70 penetration bitumen only,

INRC

- Limestone/Dolomite aggregates only,
- AC mixes viewed only as a source of strength and low deformability.

In <u>the 70's</u> due to low skid resistance problems, a Gap Graded Mixture (GGM) using basaltic coarse aggregates was adopted.



INRC

# In the <u>early 90's</u> due to increased Rutting and Bleeding in DGM it was decided to:

- 1) Lower bitumen content by reducing fines in the mix and increase energy of compaction from 50 to 75 blows.
- 2) Move from Penetration to Viscosity grading and adopt stiffer bitumen (AC-30, AC-40).

חברה הלאומית לדרכים



**INRC** 





INRC

### Since 1994 Israel adopted 3 Advanced AC Mixes <u>"S"</u> - Based on US SHRP Program (Superpave). Widely used for all pavement layers.

<u>SMA</u>- Stone Mastic Asphalt , Based on German technology. Widely used for wearing courses in main roads.

<u>Porous Asphalt (PA)</u> – with more than 20% air voids. Based on French technology. Seldom used for noise reduction only.



Advanced AC mixtures offer: (in addition to stability and deformability)

- ✓ Increased durability,
- ✓ Noise Reduction,
- Improved rut resistance,
- Higher skid resistance,
- ✓ Better ride quality,
- ✓ Faster drainage,
- Enhanced road marking visibility.

## **The First SMA Project**

#### After more than 30 years still in good condition !



23



- 30





35



С

## **Basics of Advanced AC Mixes**

- 1. Maximize stone-to-stone contact in granular skeleton, for improved stability and rut resistance.
- 2. Thicken bitumen film for improved flexibility and durability.

#### **The key:** High VMA.

**INRC** 

**There is a problem:** How to avoid drain down of higher bitumen content from a coarse aggregate skeleton.



## **Use stabilizing fibers**

INRC

C



## **Typical Grading**

INRC

2



13

INRC

 $\mathbf{)}$ 

**TYPICAL MIXTURES COMPONENTS** 



## **SMA Components**

#### **Stone Skeleton**

**INRC** 

C



## **Typical Mix Skeleton**





#### DGM



16



INRC

C

## **Load Transfer**



INRC

)



**SMA** 





D

## Netivey Ayalon Highway Test, 2004

### **Compare 4 AC mixtures with respect to:**

- Noise Reduction,
- Skid Resistance,
- •Ride Quality,
- **Mixtures tested:**
- •DGM reference mix, •PA,
- •SMA0/8,
- •SMA0/5.



C

### Noise Reduction (in dBA) with respect to DGM

| Vehicle<br>velocity<br>(km/hr) | SMA 0/5 | SMA 0/8 | PA  |
|--------------------------------|---------|---------|-----|
| 50                             | 6.2     | 5.6     | 3.7 |
| 80                             | 8.3     | 5.8     | 5.1 |
| 100                            | 8.5     | 8.2     | 6.6 |

**<u>Note:</u>** A 3 dBA reduction is equivalent to a 50% cut in traffic volume or doubling the distance from the ear to the noise source.

19

## **Noise Reduction vs. Velocity**

**INRC** 



החברה הלאומית לדרכים בישראל בע"מ

20

## **Skid Resistance**

INRC

)



21

### Improved ride quality IRI (m/km)

INRC

2

| Mix Type      | IRI  |
|---------------|------|
| PA            | 0.86 |
| <b>SMA0/8</b> | 0.76 |
| SMA 0/5       | 0.88 |

22

## Facing new problems - 2007

#### **Problems:**

**INRC** 

- 1. Lack of high PSV aggregates in the 5-10mm fraction,
- 2. Raising costs of bitumen and aggregates,

#### **Solutions:**

- 1. "Zebra" Mixes (50%-50% Basalt/ Limestone),
- 2. Thinner SMA layers,
- 3. New SMA gradings.

## **Effect of Basalt Aggregate Percentage on PSV of "ZEBRA" Mixtures**

С



## **Thin Layers Test Sections**

INRC

С

| SMA<br>grading | Road No. | Thickness<br>(mm) | Main Agg.<br>Fraction<br>(mm) |
|----------------|----------|-------------------|-------------------------------|
| 0/5            | 1        | 15-20             | 2-5                           |
| 0/10           | 4        | 20-25             | 5-10                          |
| 0/15           | 2        | 30-35             | 10-15                         |



INRC

С

## Materials implemented (9 combinations)

| SMA<br>gradings | Bitumen<br>gradings | Fibers types       |
|-----------------|---------------------|--------------------|
| 0/5             | PG 68-10            | Viatop 66          |
| 0/10            | <b>PG 70-10</b>     | Viatop<br>Premium  |
| 0/15            | PG 74-10            | Viatop<br>Superior |

## **Properties Of Thin Layers**

INRC

С

| SMA            | Skid       | id Roughness IRI, |            |
|----------------|------------|-------------------|------------|
| grading        | Resistance | (m/km)            | Topography |
| <b>SMA0/5</b>  | 0.46       | 1.4               | Hilly      |
| <b>SMA0/10</b> | 0.49       | 1.4               | Plain      |
| <b>SMA0/15</b> | 0.42       | 1.5               | Plain      |

החברה הלאומית לדרכים בישראל בע"מ

28



### **Preliminary conclusions on thin SMA Layers (After 1 year)**

- There were no problems in the production and laying of all mixes,
- All mixes satisfied stability and air voids specification requirements,
- All layers display high skid resistance and low IRI.



INRC

2

## **Typical Costs for Wearing Courses**

| Mix            | Typical<br>layer<br>thickness<br>(cm) | Typical<br>mix price<br>(NIS/ton) | Layer cost<br>(NIS/m <sup>2</sup> ) |
|----------------|---------------------------------------|-----------------------------------|-------------------------------------|
| DG             | 5                                     | 200                               | 24.0                                |
| S              | 4                                     | 250                               | 26.0                                |
| <b>SMA0/15</b> | 3.5                                   | 300                               | 25.0                                |
| <b>SMA0/10</b> | 2.5                                   | 350                               | 20.0                                |
| <b>SMA0/5</b>  | 1.5                                   | 400                               | 13.5                                |

החברה הלאומית לדרכים בישראל בע"מ

30

## **Present Policy on AC mixtures**

**INRC** 

- •DGM Mostly for urban use.
  •S for base and binder courses in all roads. Wearing course for secondary roads.
- SMA Mixes Wearing course for main roads.
  GGM, PA Seldom used.



- 34



)



36

-



)



35

-



)

#### First use of SMA0/8 in Rd #4, 1999

## Ride Quality at paving: 1.4 m/km





החברה הלאומית לדרכים בישראל בע"מ

22 05 2005



С



--- 37



42

-



## First use of SMA0/5 in Tel Aviv, (Rd #2040), 10/2003

## First use of SMA0/5 in Tel Aviv, (Rd #2040), 10/2003



## First use of SMA0/5 in Tel Aviv, (Rd #2040), 10/2003



17 10 2003

### Netevey Ayalon Rd. – Test Section, 2004



## Netevey Ayalon Rd. – Test Section, 2004

החברה הלאומית לדרכים בישראל בע"מ

22 05 2005

22 05 2005

### SMA0/5 in Bernstein St., Ramat Gan, 2004

#### Noise Reduction: 5.5 dBA





החברה הלאוטיול לדרכים בישראל בע ט

### SMA0/5 in Hagilad-A.H.S. Jct. Ramat Gan, 2005



### **Ideas for future developments**

1. Optimization of SMA thin layers,

INRC

- 2. Use of SMA for noise reduction purposes,
- 3. Implementation of "Zebra" Mixtures (Limestone/Basalt, Limestone/Bauxite, etc.),
- 4. Investigation of Modified bitumens in the asphalt plant using modified fibers, asphalt rubber, etc.

